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tion set computing) core, floating-point units, and caches on one chip lets 
us design wider internal buses, eliminate interchip communication over- 
head, and offer higher performance. As a result, the i860 avoids off-chip 
delays and allows users to scale the clock beyond the current 33- and 40- 
MHz speeds. 

We designed the i860 for performance-driven applications such as work- 
stations, minicomputers, application accelerators for existing processors, 
and parallel supercomputers. The i860 CPU design began with the specifi- 
cation of a general-purpose RISC integer core. However, we felt it neces- 
sary to go beyond the traditional 32-bit, one-instruction-per-clock RISC 
processor. A 64-bit architecture provides the data and instruction band- 
width needed to support multiple operations in each clock cycle. The 
balanced performance between integer and floating-point computations 
produces the raw computing power required to support demanding applica- 
tions such as modeling and simulations. 

Finally, we recognized a synergistic opportunity to incorporate a 3D 
graphics unit that supports interactive visualization of results. The architec- 
ture of the i860 CPU provides a complete platform for software vendors 
developing i860 applications. 
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Architecture overview. The i860 CPU includes the following units on 

the RISC integer core, 
a memory management unit with paging, 
a floating-point control unit, 
a floating-point adder unit, 
a floating-point multiplier unit, 
a 3D graphics unit, 

one chip (see Figure 2): 
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Figure 1. Die photograph of the i860 CPU. 

a 4-Kbyte instruction cache, 
an 8-Kbyte data cache, and 
a bus control unit. 

Parallel execution. To support the performance 
available from multiple functional units, the i860 CPU 
issues up to three operations each clock cycle. In single- 
instruction mode, the processor issues either a RISC 
core instruction or a floating-point instruction each 
cycle. This mode is useful when the instruction per- 
forms scalar operations such as operating system 
routines. 

In dual-instruction mode, the RISC core fetches two 
32-bit instructions each clock cycle using the 64-bit- 
wide instruction cache. One 32-bit instruction moves to 
the RISC core, and the other moves to the floating-point 
section for parallel execution. This mode allows the 
RISC core to keep the floating-point units fed by fetch- 
ing and storing information and performing loop con- 
trol, while the floating-point section operates on the 
data. 

The floating-point instructions include a set of op- 
erations that initiate both an add and a multiply. The 
add and multiply. combined with the integer operation. 
result in  three operations each clock cycle. With this 
fine-grained parallelism, the architecture can support 
traditional vector processing by software libraries that 
implement a vector instruction set. The inner loops of 
the software vector routines operate up to the peak 
floating-point hardware rate of 80 million floating- 
point operations per second. Consistent with RISC 
philosophy, the i860 CPU achieves the performance of 
hardware vector instructions without the complex 
control logic of hardware vector instructions. The fine- 
grained parallelism can also be used in other parallel 
algorithms that cannot be vectorized. 

Register and addressing model. The i860 micro- 
processor contains separate register files for the integer 
and floating-point units to support parallel execution. 
In addition to these register files, as can be seen in 
Figure 3 on page 18, are six control registers and four 
special-purpose registers. The RISC core contains the 
integer register file of thirty-two 32-bit registers, des- 
ignated RO through R3 1 and used for storing addresses 
or data. The floating-point control unit contains a sepa- 
rate set of thirty-two 32-bit floating-point registers 
designated FO through F31. These registers can be 
addressed individually, as sixteen 64-bit registers, or as 
eight 128-bit registers. The integer registers contain 
three ports. Five ports in the floating-point registers 
allow them to be used as a data staging area for perform- 
ing loads and stores in parallel with floating-point 
operations. 

The i860 operates on standard integer and floating- 
point data, as well as pixel data formats for graphics 
operations. All operations on the integer registers exe- 
cute on 32-bit data as signed or unsigned operations and 
additional add and subtract instructions that operate on 
64-bit-long words. All 64-bit operations occur in the 
floating-point registers. 

The i860 microprocessor supports a paged virtual 
address space of four gigabytes. Therefore, data and 
instructions can be stored anywhere in that space, and 
multibyte data values are addressed by specifying their 
lowest addressed byte. Data must be accessed on 
boundaries that are multiples of their size. For example, 
two-byte datamust be aligned to an address divisible by 
two, four-byte data on an address divisible by four, and 
so on, up to 16-byte data values. Data in memory can be 
stored in either little-endian or big-endian format. 
(Little-endian format sends the least significant byte, 
D7-DO, first to the lowest memory address, while big- 
endian sends the most significant byte first.) Code is 
always stored in little-endian format. Support for big- 
endian data allows the processor to operate on data 
produced by a big-endian processor, without perform- 
ing a lengthy data conversion. 
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Figure 2. Functional units and data paths of the i860 microprocessor. 

RISC core 
The RISC core fetches both integer and floating- 

point instructions. It executes load, store, integer, bit, 
and control transfer instructions. Table 1 on page 19 
lists the full instruction set with the 42 core unit instruc- 
tions and their mnemonics in the left column. All in- 
structions are 32 bits long and follow the load/store, 
three-operand style of traditional RISC designs. Only 

load and store instructions operate on memory; all other 
instructions operate on registers. Most instructions 
allow users to specify two source registers and a third 
register for storing the results. 

A key feature of the core unit is its ability to execute 
most instructions in one clock cycle. The RISC core 
contains a pipeline consisting of four stages: fetch, 
decode, execute, and write. We used several techniques 
to hide clock cycles of instructions that may take more 
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F1 

time to complete. Integer register loads from memory 
take one execution cycle, and the next instruction can 
begin on the following cycle. 

The processor uses a scoreboarding technique to 
guarantee proper operation of the code and allow the 
highest possible performance. The scoreboard keeps a 
history of which registers await data from memory. The 
actual loading of data takes one clock cycle if it is held 
in the cache memory buffer available for ready access, 
but several cycles if it is in main memory. Using 
scoreboarding, the i860 microprocessor continues 
execution unless a subsequent instruction attempts to 
use the data before it is loaded. This condition would 
cause execution to freeze. An optimizing compiler can 
organize the code so that freezing rarely occurs by not 
referencing the load data in the following cycle. Be- 
cause the hardware implements scoreboarding, it is 
never necessary to insert NO-OP instructions. 
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We included several control flow optimizations in 
the core instruction set. The conditional branch instruc- 
tions have variations with and without a delay slot. A 
delay slot allows the processor to execute an instruction 
following a branch while it is fetching from the branch 
target. Having both delayed and nondelayed variations 
of branch instructions allows the compiler to optimize 
the code easily, whether a branch is likely to be taken or 
not. Test and branch instructions execute in one clock 
cycle, a savings of one cycle when testing special cases. 
Finally, another one-cycle loop control instruction 
usefully handles tight loops, such as those in vector 
routines. 

Instead of providing a limited set of locked opera- 
tions, the RISC core provides lock and unlock instruc- 
tions. With these two instructions a sequence of up to 
32 instructions can be interlocked for multiprocessor 
synchronization. Thus, traditional test and set opera- 
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Figure 3. Register set. 
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Table 1. 
Instruction-set summary. 

Llnemonic Description Mnemonic Description 

Zore unit 
Load and store instructions 
LD.X Load integer 
3T.X Store integer 
FLD.Y F-P load 
?FLD.Z Pipelined F-P load 
FST.Y F-P store 
PST.D Pixel store 
Register-to-register moves 
lXFR 
FXFR 
integer arithmetic instructions 
4DDU Add unsigned 
4DDS Add signed 
SUBU Subtract unsigned 
SUBS Subtract signed 
Shift instructions 
SHL Shift left 
SHR Shift right 
SHRA Shift right arithmetic 
SHRD Shift right double 
Logical instructions 
4ND Logical AND 
4NDH Logical AND high 
4NDNOT Logical AND NOT 
4NDNOTH Logical AND NOT high 
3 R  Logical OR 
3RH Logical OR high 
)<OR Logical exclusive OR 
YORH Logical exclusive OR high 
Zontrol-transfer instructions 
rRAP Software trap 
INTOVR 
BR Branch direct 
SRI Branch indirect 
BC Branch on CC 
BC.T Branch on CC taken 
3NC Branch on not CC 
BNC.T 
3 TE Branch if equal 
BTNE Branch if not equal 
BLA 
CALL Subroutine call 
CALLI Indirect subroutine call 
System control instructions 
FLUSH Cache flush 
LD.C Load from control register 
ST.C Store to control register 
LOCK Begin interlocked sequence 
UNLOCK End interlocked sequence 

Transfer integer to F-P register 
Transfer F-P to integer register 

Software trap on integer overflow 

Branch on not CC taken 

Branch on LCC and add 

Floating-point unit 
Floating-point multiplier instructions 
FMUL.P F-P multiply 
PFMUL.P Pipelined F-P multiply 
PFMUL3.DD Three-stage pipelined F-P multiply 
FMLOW .P F-P multiply low 
FRCP.P F-P reciprocal 
FRSQR . P 
Floating-point adder instructions 
FADD.P F-P add 
PFADD. P Pipelined F-P add 
FSUB.P F-P subtract 
PFSUB.P Pipelined F-P subtract 
PFGT.P Pipelined F-P greater-than compare 
PFEQ.P Pipelined F-P equal compare 
F1X.P F-P to integer conversion 
PF1X.P 
FTRUNC.P F-P to integer truncation 
PFTRUNC.P 
PFLE.P 
PAMOV F-P adder move 
PFAMOV Pipelined F-P adder move 
Dual-operation instructions 
PFAM.P 
PFSM.P 
PFMAM 
PFMSM 
Long integer instructions 
FLSUB.Z Long-integer subtract 
PFLSUB.Z Pipelined long-integer subtract 
FLADD.Z Long-integer add 
PFLADD.Z Pipelined long-integer add 
Graphics instructions 
FZCHKS 16-bit z-buffer check 
PFZCHKS Pipelined 16-bit ,--buffer check 
FZCHLD 32-bit z-buffer check 
PFZCHLD Pipelined 32-bit z-buffer check 
FADDP Add with pixel merge 
PFADDP Pipelined add with pixel merge 
FADDZ Add with z merge 
PFADDZ Pipelined add with 2 merge 
FORM OR with merge register 
PFORM Pipelined OR with merge register 
Assembler pseudo-operations 
MOV Integer register-register move 
FM0V.Q F-P register-register move 
PFM0V.Q Pipelined F-P register-register move 
NOP Core no-operation 
FNOP F-P no-operation 

F-P reciprocal square root 

Pipelined F-P to integer conversion 

Pipelined F-P to integer truncation 
Pipelined F-P less than or equal 

Pipelined F-P add and multiply 
Pipelined F-P subtract and multiply 
Pipelined F-P multiply with add 
Pipelined F-P multiply with subtract 

cc Condition code 
F-P Floating-point 
LCC Load condition code 
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tions as well as more sophisticated operations, such as 
compare and swap, can be performed. 

The RISC core also executes a pixel store instruc- 
tion. This instruction operates in conjunction with the 
graphics unit to eliminate hidden surfaces. Other in- 
structions transfer integer and floating-point registers, 
examine and modify the control registers, and flush the 
data cache. 

The six control registers accessible by core instruc- 
tions are the 

PSR (processor status), 
EPSR (extended processor status), 
DB (data breakpoint), 
FIR (fault instruction), 
Dirbase (directory base), and 
FSR (floating-point status) registers. 

The PSR contains state information relevant to the 
current process, such as trap-related and pixel informa- 
tion. The EPSR contains additional state information 
for the current process and information such as the 
processor type, stepping, and cache size. The DB reg- 
ister generates data breakpoints when the breakpoint is 
enabled and the address matched. The FIR stores the 
address of the instruction that causes a trap. The Dir- 
base register contains the control information for cach- 
ing, address translation, and bus options. Finally, the 
FSR contains the floating-point trap and rounding- 
mode status for the current process. The four special- 
purpose registers are used with the dual-operation 
floating-point instructions (described later). 

The core unit executes all loads and stores, including 
those to the floating-point registers. Two types of float- 
ing-point loads are available: FLD (floating-point load) 
and PFLD (pipelined floating-point load). The FLD 
instruction loads the floating-point register from the 
cache, or loads the data from memory and fills the cache 
line if the data is not in the cache. Up to four floating- 
point registers can be loaded from the cache in one 
clock cycle. This ability to perform 128-bit loads or 
stores in one clock cycle is crucial to supplying the data 
at the rate needed to keep the floating-point units 
executing. The FLD instruction processes scalar 
floating-point routines, vector data that can fit entirely 
in the cache, or sections of large data structures that are 
going to be reused. 

For accessing data structures too large to fit into the 
on-chip cache, the core uses the PFLD instruction. The 
pipelined load places data directly into the floating- 
point registers without placing it in the data cache on a 
cache miss. This operation avoids displacing the data 
already in the cache that will be reused. Similarly on a 
store miss, the data writes through to memory without 
allocating a cache block. Thus, we avoid data cache 
thrashing, a crucial factor in achieving high sustained 
performance in large vector calculations. 

PFLD also allows up to three accesses to be issued on 

the pipelined external bus before the data from the first 
cache miss is returned. The pipelined loads occur di- 
rectly from memory and do not cause extra bus cycles 
to fill the cache line, avoiding bus accesses to data that 
is not needed. The full bus bandwidth of the external 
bus can be used even though cache misses are being 
processed. Autoincrement addressing, with an arbi- 
trary increment, increases the flexibility and perform- 
ance for accessing data structures. 

Memory management 
The i860’s on-chip memory management unit imple- 

ments the basic features needed for paged virtual 
memory management and page-level protection. We 
intentionally duplicated the memory management tech- 
nique in the 386 and 486 microprocessors’ paging 
system. In this way we can be sure that the processors 
easily exist in a common operating environment. The 
similar MMUs are also useful for reusing paging and 
virtual memory software that is written in C. 

The address translation process maps virtual address 
space onto actual address space in fixed-size blocks 
called pages. While paging is enabled, the processor 
translates a linear address to a physical address using 
page tables. As used in mainframes, the i860 CPU page 
tables are arranged in a two-level hierarchy. (See Fig- 
ure 4.) The directory table base (DTB), which is part of 
the Dirbase register, points to the page directory. This 
one-page-long directory contains address entries for 
1,024 page tables. The page tables are also one page 
long, and their entries describe 1,024 pages. Each page 
is 4 Kbytes in size. 

Figure 4 also shows the translation from a virtual 
address to a physical address. The processor uses the 
upper 10 bits of the linear address as an index into the 
directory. Each directory entry contains 20 bits of 
addressing information, part of which contains the 
address of a page table. The processor uses these 20 bits 
and the middle 10 bits of the linear address to form the 
page table address. The address contents of the page 
table entry and the lower 12 bits (nine address bits and 
the byte enables) of the linear address form the 32-bit 
physical address. 

The processor creates the paging tables and stores 
them in memory when it creates the process. If the 
processor had to access these page tables in memory 
each time that a reference was made, performance 
would suffer greatly. To save the overhead of the page 
table lookups, the processor automatically caches 
mapping information for the 64 recently used pages 
in an on-chip, four-way, set-associative translation 
lookaside buffer. The TLB’s 64 entries cover 4 Kbytes, 
each providing a total cover of 256 Kbytes of memory 
addresses. The TLB can be flushed by setting a bit in the 
Dirbase register. 

20 IEEEMICRO 



Dir Page Off set 

Physical 
address b 

Page directory Page table 

Figure 4. Virtual-to-physical address translation. 
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Figure 5. Format of a page table entry. (X indicates Intel reserved; do not use.) 

Only when the processor does not find the mapping 
information for a page in the TLB does it perform a 
page table lookup from information stored in memory. 
When a TLB miss does occur, the processor performs 
the TLB entry replacement entirely in hardware. The 
hardware reads the virtual-to-physical mapping infor- 
mation from the page directory and the page table 
entries, and caches this information in the TLB. 

The format of a page table entry can be seen in Figure 
5. Paging protects supervisor memory from user ac- 
cesses and also permits write protection of pages. The 
U (user) and W (write) bits control the access rights. 
The operating system can allow a user program to have 
read and write, read-only, or no access to a given page 
or page group. If a memory access violates the page 
protection attributes, such as U-level code writing a 
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read-only page, the system generates an exception. 
While at the user level, the system ignores store control 
instructions to certain control registers. 

The U bit of the PSR is set to 0 when executing at the 
supervisor level, in which all present pages are read- 
able. Normally, at this level, all pages are also writable. 
To support a memory management optimization called 
copy-on-write, the processor sets the write-protection 
(WP) bit of the EPSR. With WP set, any write to a page 
whose W bit is not set causes a trap, allowing an 
operating system to share pages between tasks without 
making a new copy of the page until it is written. 

Of the two remaining control bits, cache disable 
(CD) and write through (WT), one is reflected on the 
output pin for a page table bit (PTB), dependent on the 
setting of the page table bit mode (PBM) in EPSR. The 
WT bit, CD bit, and KEN# cache enable pin are inter- 
nally NORed to determine “cachability.” If either of 
these bits is set to one, the processor will not cache that 
page of data. For systems that use a second-level cache, 
these bits can be used to manage a second-level coher- 
ent cache, with no shared data cached on chip. In 
addition to controlling cachability with software, the 
KEN# hardware signal can be used to disable cache 
reads. 

Floating-point unit 
Floating-point unit instructions, as listed in Table 1 ,  

support both single-precision real and double-preci- 
sion real data. Both types follow the ANSI/IEEE 754 
standard.’ The i860 CPU hardware implements all four 
modes of IEEE rounding. The special values infinity, 
NaN (not a number), indefinite, and denormal generate 
a trap when encountered; and the trap handler produces 
an IEEE-standard result. The double-precision real 
data occupies two adjacent floating-point registers with 
bits 31 . . . 0 stored in an even-numbered register and 
bits 63 . . . 32 stored in the adjacent, higher odd- 
numbered register. 

The floating-point unit includes three-stage-pipe- 
lined add and multiply units. For single-precision data 
each unit can produce one result per clock cycle for a 
peak rate of 80 Mflops at a 40-MHz clock speed. For 
double-precision data, the multiplier can produce a 
result every other cycle. The adder produces a result 
every cycle, for a peak rate of 60 million floating-point 
operations per second. The double-precision peak 
number is 40 Mflops if an algorithm has an even 
distribution of multiplies and adds. Reducing the 
double-precision multiply rate saves half of the multi- 
plier tree and is consistent with the data bandwidth 
available for double-precision operations. 

To save silicon area, we did not include a floating- 
point divide unit. Instead, software performs floating- 
point divide and square-root operations. Newton-Ra- 
phson algorithms use an 8-bit seed provided by a 

DO 10, I = 1 ,  100 
10 X = X * A + C  

FMUL X, A, temp 
FADD temp, C, X 

1 result per 6 clock cycles 
(a) 

DO 10, I = 1, 100 
X[I] = A[I] * B[I] + C 10 

M12TPM A[I], B[I], XII - 61 

1 result per clock cycle 
(b) 

Figure 6. Floating-point execution models: data-de- 
pendent code in scalar mode (a) and vector code in 
pipeline mode (b). 
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Figure 7. Dual-operation data paths. 
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hardware lookup table. Full IEEE rounding can be 
implemented by using an instruction that returns the 
low-order bits of a floating-point multiply. Therefore 
these algorithms can take advantage of the pipeline and 
allow 16-bit reciprocals used in many graphics calcula- 
tions to be performed either in 10 clock cycles or four 
pipelined cycles. 

The floating-point instruction set supports two 
computation models, scalar and pipelined. In scalar 
mode new floating-point instructions do not start proc- 
essing until the previous floating-point instruction 
completes. This mode is used when a data dependency 
exists between the operations or when a compiler ig- 
nores pipeline scheduling. In the scalar-mode example 
of Figure 6 each iteration of the Do loop requires the 
results from the previous iteration and 6-cycle execu- 
tion. 

In pipelined mode the same operation can produce a 
result every clock cycle, and the CPU pipeline stages 
are exposed to software. The software issues a new 
floating-point operation to the first stage of the pipeline 
and gets back the result of the last stage of the pipeline. 
Destination registers are not specified when the opera- 
tion begins, rather when the result is available. This 
explicit pipelining avoids tying up valuable floating- 
point registers for results, so the registers can still be 
used in the pipeline. Implicit pipelining, using score- 
boarding, would cause the registers to become the 
bottleneck in the floating-point unit. 

Pipelining also takes place in a dual-operation mode 
in which an add and a multiply process in parallel. 
Figure 7 shows the adder unit, the multiplier unit, the 
special registers, and the dual-operation data paths. 
Dual-operation instructions require six operands. The 
register file provides three of the operands, and the 
special registers and the interunit bypasses provide the 
remaining three. The instruction encodings specify the 
source and destination paths for the units. 

Referring back to the pipeline-mode example of 
Figure 6 ,  note that we show the dual-operation instruc- 
tion M12TPM SRCl,  SRC2, RDEST as M12TPM A[i], 
B[i], X[-61. (The M12TPM mnemonic is a variation of 
the PFAN instruction.) This instruction specifies that 
the multiply is initiated with SRCl and SRC2 as the 
operands. It also specifies that the add is initiated with 
the result from the multiply and the T register as the 
operands, and RDEST stores the result from the add. 
Because of the three stages of the add and multiply 
pipelines, the available result comes from the operation 
that started six clock cycles previously. 

There are 32 variations of dual-operation instruc- 
tions. Applications such as fast Fourier transforms, 
graphics transforms, and matrix operations can be 
implemented efficiently with these instructions. Some 
apparently scalar operations, such as adding a series of 
numbers, can also take advantage of the pipelining 
capability. 
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Figure 8. Dual-instruction-mode transitions. 

The is60 microprocessor can provide its fast float- 
ing-point hardware with the necessary data bandwidth 
to achieve peak performance for the inner loops of 
common routines. The dual-instruction mode allows 
the processor to perform up to 128-bit data loads and 
stores at the same time it executes a multiply and an 
add. Figure 8 shows the dual-instruction-mode transi- 
tions for an extended sequence of instruction pairs and 
for a single instruction pair. Programs specify dual- 
instruction mode in two ways. They can either include 
in the mnemonic of a floating-point instruction a “d.” 
prefix or use the assembler directives .dual. . . enddual. 
Either of these methods causes the dual or D-bit of the 
floating-point instruction to be set. If the processor 
while executing in single-instruction mode encounters 
a floating-point instruction with the D-bit set, it exe- 
cutes one more 32-bit instruction before beginning 
dual-instruction execution. In dual-instruction mode, a 
floating-point instruction could encounter a clear D- 
bit. The processor would then execute one more in- 
struction pair before returning to single-instruction 
mode. 

The floating-point hardware also performs integer 
multiplies and long integer adds or subtracts. Integer 
multiplies by constants can be performed in the RISC 
core using shift instructions. To perform a full integer 
multiply, the processor transfers two integer registers 
by using IXFR instructions. The FMLOW instruction 
performs the actual multiplication, and the FXFR in- 
struction transfers the results back to the core. The total 
operation takes from four to nine clock cycles, depend- 
ing on what other instructions can be overlapped. 
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Graphics 
The floating-point hardware of the CPU efficiently 

performs the transformation calculations and advanced 
lighting calculations required for 3D graphics. The 
processor performs 500K transforms/second for 3 x 4 
3D matrices, including the trivial reject clipping and 
perspective calculations. A 3D image display requires 
the use of integer operations for shading and hidden- 
surface removal. The graphics unit hardware speeds 
these back-end rendering operations and operates di- 
rectly into screen buffer memory. It uses the floating- 
point registers and operates in parallel with the core. 

Graphics instructions take advantage of the 64-bit 
data paths and can operate on multiple pixels simulta- 
neously, realizing I O  times the speed of the RISC 
core when performing shading. Instructions support 
8-, 16-, and 24/32-bit pixels, operating respectively 
on eight, four, or two pixels simultaneously. 

In 3D graphics, polygons generally represent the set 
of points on the surface of a solid object. During 
transformation, the graphics u n i t  calculates only the 
vertices of the polygons. The unit knows the locations 
and color intensities of the vertices of the polygons. but 
points between these vertices must be calculated. These 
points, along with their associated data, are called 
pixels. If a figure is displayed with only the vertices and 
simple lines, it appears as a wireframe drawing. The 
simplest wireframe drawing typically shows all verti- 
ces, even the ones that should be hidden from view by 
an overlapping polygon. To show shaded 3D images, 
the graphics unit must display the surface of the poly- 
gons. Where polygons overlap, i t  must display the 
polygon closest to the viewer. 

In graphics calculations the z value represents the 
distance of a pixel from the viewer. Although the depth 
of each polygon’s vertices is known, to overlay poly- 
gons not on a vertex, the graphics unit must interpolate 
the depths from the bordering vertices. This step is 
called z interpolation. In this step the depths of all 
points of a polygon can be determined. For overlapping 
points, the z values of different polygons can be checked 
and only the pixel data of the polygon closest to the 
viewer displayed. 

To perform the procedure just described, the graph- 
ics instructions include intensity interpolation, z inter- 
polation, and z-buffer checks. Intensity interpolation 
allows smooth linear changes in pixel intensity and 
color between vertices. This capability provides a 
smoother appearance than does the flat shading of the 
polygons. The more data bits per pixel, the smoother 
the interpolation becomes. The i860 CPU graphics 
instructions support both Gouraud and higher order 
shading techniques. Gouraud shading interpolates in- 
tensities along the scan lines. Figure 9 illustrates pixel 
interpolation for Gouraud shading of a triangle. The 
intensity level across the scan line shown is interpo- 
lated from 30 to 27. 

Red color 20 (r, g, b, x ,  Y. z) 
(0-255) 

Figure 9. Pixel interpolation for Gouraud shading of a 
triangle for red colors and 0-255 intensity levels. 

In graphics the :-buffer, which can reside in normal 
dynamic RAM, stores the depth of the pixel buffer 
currently being displayed. Instructions for ;-buffer 
interpolation calculate the z values between vertices. Z-  
buffer check instructions compare the new pixels’ z 
values to the values in the ,--buffer, and if closer, the 
pixels are unmasked in the pixel mask register. The 
RISC core operates in parallel with the graphics unit 
and executes a pixel store instruction. The pixel store 
updates the pixels that are unmasked in the mask regis- 
ter. If a pixel is updated, the new : value needs to be 
stored to the :-buffer. The z-buffer check instruction 
updates the buffer with the minimum : value for each 
pixel. 

Most workstations typically have a base graphics 
system of a simple frame buffer with simple display 
hardware. With a frame-buffer graphics system, the 
i860 CPU can perform Gouraud-shading operations on 
50,000 triangles per second at 40 MHz. This level of 
performance exceeds that of workstations that include 
costly dedicated graphics processor boards. 

Caches 
The i860 CPU has a4-Kbyte instruction cache and an 

8-Kbyte data cache, each with its own address and data 
paths to support concurrent accesses. The data cache 
supports up to 128-bit accesses on each clock cycle, and 
the instruction cache supports up to 64-bit accesses. 
The aggregate bandwidth at 40 MHz is 960 Mbytes/ 
second. Both caches combine two-way set-associative 
parallelism with a 32-byte line size. Additionally, the 
data cache uses write-back caching. 
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Both caches use virtual addresses to avoid a critical 
path in the cache access. Data cache accesses use the 
TLB lookup for enforcing the page-based protection. 
Since both caches use virtual tags, software must avoid 
the aliasing of data. Within a context, each physical 
address must only be accessed with one virtual address. 
During context switches, the instruction cache must be 
invalidated and the data cache flushed. The caches, 
although large enough to give hit rates above 90 percent 
within many applications, are too small to provide hits 
across context changes. Therefore, we did not feel 
process IDS or a duplicate set of physical tags to avoid 
flushing the cache between context switches were 
warranted. 

Flushing the data cache is an easy way to avoid 
aliasing, and a simple calculation shows what little 
impact a small cache has on performance flushing. A 
typical i860 CPU context switch, including the data 
cache flush, takes approximately 65 microseconds. In 
the worst case, a workstation will change context 200 
times per second; multiplying (65 * seconds * 200 
times/second) equals a 1.3 percent performance degra- 
dation due to context switching. 

Write-back data caching avoids propagating all 
writes to the external bus, which reduces bus traffic. It 
also prevents a bottleneck in vector operations where 
write traffic from the vector result collides with an 
incoming vector operand. With write-back caching, the 
hardware necessary to implement transparent caching 
for multiprocessor systems moved costs beyond the 
silicon budget of this implementation. Instead, we use 
software to manage cache coherency. Each processor 
can cache code, vector register data, and private stack 
data, while shared data remains uncached. Software 
controls the caching by using a cachable bit in the page 
table entries to prevent shared data from being cached. 
External hardware can also assert a cachable enable pin 
to control cachability of each line’s read miss. The 
flush instruction forces all “dirty” blocks in the data 
cache back to memory. Flushing is needed before 
removing a page or changing to a new virtual address 
space. 

We included optimizations for cache-miss process- 
ing. Each cachable read miss results in four bus cycles 
to fill the 32-byte cache line. First, the processor fetches 
the referenced data word and performs a wraparound 
fill to read the entire line. The processor can then 
continue execution when the first word is returned. The 
processor contains two 128-bit write buffers used for 
store misses and cache miss processing. When the 
processor issues a store instruction that misses the 
cache, it can continue execution while the write buffer 
carries out the actual memory write. The write buffers 
support two store misses and also support a delayed 
write back of the dirty cache line. If a cachable read 
miss displaces a dirty cache line, three operations take 
place. The processor writes the dirty line to the write 
buffer, the cache line read takes place on the external 

bus, and then the write back occurs. 
A convenient software model for managing the data 

cache for vector computations on large matrices is to 
the treat the data cache as a “vector register set.” 
Vectors, or their intermediate results, that are being 
reused are kept in the onboard cache by referencing 
with the normal floating-point load instruction. The 
vectorization process analyzes nested loops to deter- 
mine which vectors are reusable in the second-loop 
level. Vector register references in the vector library 
routines use the normal floating-point load instruction. 
Vector memory references use the pipelined floating 
load instruction to stream the data from memory di- 
rectly into the registers and not disturb the cache. Using 
the data cache as a vector register set is a more flexible 
concept than that found in many supercomputers with 
small, fixed-length vector registers. This concept of- 
fers the advantages of a vector register set for vector 
computations while retaining the flexibility of a data 
cache for scalar computations. 

Bus interface 
Designed for scalability to 50 MHz, the i860 CPU 

external bus performs a 64-bit transfer every two clock 
cycles. Thus, we achieve the design of a practical TTL 
(transistor-transistor logic) system, even at 50 MHz. 
The bus can interface either to a second-level cache or 
directly to a DRAM system. The bus allows optional 
pipelining for increasing the access time without de- 
creasing the bandwidth. The full bus bandwidth can be 
realized from one bank of DRAMS, however, the la- 
tency will be greater than if a fast static RAM cache is 
used. 

With the two-cycle transfer rate, the external bus can 
supply one memory operand for every double- 
precision add/multiply pair, or two contiguous single- 
precision operands for every two single-precision add/ 
multiply pairs. The other two vector operands for an 
add/multiply pair must come from the onboard data 
cache. This approach provides the same ratio of 
floating-point rate to external memory bandwidth as 
the Cray 1. To avoid bus bottlenecks, the vectorization 
process must try to reuse two of the three vector oper- 
ands in the second-level inner loop. 

The i860 microprocessor contains a synchronous 
interface with a demultiplexed address and 64-bit-wide 
data bus. The address bus provides 32-bit addressing, 
consisting of 29 address lines and separate byte enable 
signals for each eight data bits. The bidirectional data 
bus can accept or drive new data on every other clock 
cycle, yielding a bandwidth of 160 Mbytes per second 
at 40 MHz. 

The bus optionally allows for two levels of bus 
pipelining selected on a bus cycle-by-cycle basis. When 
pipelining, a new cycle starts prior to the completion of 
the outstanding cycles. Two levels of pipelining allow 
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Table 2. 
Processor-pin summary. 

~~ 

Pin name Function Active Input/ 
state output 

Execution control pins 
CLK Clock 
RESET System reset 
HOLD Bus hold 
HOLDA Bus hold acknowledge 
BREQ Bus request 
INT/CS8 Interrupt, code size 
Bus interface pins 
A31-A3 Address bus 
BE7#-BEO# Byte enable 
D63-DO Data bus 
LOCK# Bus lock 
W/R# Writehead bus cycle 
NENE# Next near 
NA# Next address request 
READY# Transfer acknowledge 
ADS# Address status 

I 
High I 
High I 
High 0 
High 0 
High I 

- 

High 0 
Low 0 
High I/O 
Low 0 
High/Low 0 
Low 0 
Low I 
Low I 
Low 0 

Cache interface pins 
KEN# Cache enable Low I 
PTB Page table bit High 0 
Testability pins 
SHI Boundary scan shift High I 

BSCN Boundary scan enable High I 
SCAN Shift scan path High I 
Intel-reserved configuration pins 
CC1-CCO Configuration High I 
Power and ground pins 

input 

System power - - 
System ground - - 

vcc 
vss 

A # symbol after a pin name indicates that the signal is active 
when at the low-voltage level. 

three cycles to operate at one time. Fast TTL latches can 
be used on the address and data bus. This method 
isolates the memory array from the processor pin tim- 
ings, allowing easy scalability and providing the maxi- 
‘mum time for memory accesses. With pipelining, the 
maximum data rate of the bus can be sustained even if 
the access time is six clock cycles. We achieve over 100 
nanoseconds of address-to-data access time for a full 
bandwidth system at 40 MHz. 

A summary of the processor pins appears in Table 2. 
We timed the processor with a single-frequency, TTL- 
level clock. An optional mode for executing out of one 

8-bit-wide EPROM can be entered at reset by activating 
the INT/CS8 pin. In this mode the processor fetches 
instructions from the EPROM with the byte-enable 
signals BE2#-BEO# redefined as address lines A2-AO. 

The HOLD, HOLDA, and BREQ signals activate 
arbitration of the processor’s local bus. When a DMA 
controller, or another processor, needs access to the 
local bus of the CPU, it asserts HOLD. When the CPU 
completes all of its outstanding bus cycles, it floats the 
bus interface pins and returns HOLDA active high. The 
CPU will remain in this state with HOLDA active until 
HOLD is deasserted. The CPU can continue processing 
while in HOLD until the external bus is required. At 
this time it asserts the BREQ output signal. Arbitration 
logic samples the BREQ signal to arbitrate a shared 
bus. 

The A3 1 -A3 and BE7#-BEO# bus interface pins can 
access up to 4 gigabytes of address space. The address 
lines select the 8-byte word, and the byte-enable signals 
select the byte within the word. For read accesses to 
cachable memory, the processor caches the entire data 
bus so the byte-enable signals are ignored. For write 
operations the byte-enable signals determine which 
bytes in memory must be updated. The i860 micropro- 
cessor does not, however, allow misaligned accesses. 
Data of 32 and 16 bits must be placed on 4- and 2-byte 
boundaries, respectively. However, single-byte data 
can be placed at any byte location. The 64 bidirectional 
data pins can transfer 8-, 16-, 32-, or 64-bit quantities; 
pins D7-DO signify the least significant byte and D63- 
D56 signify the most significant byte. 

The processor asserts the ADS# output during the 
first clock cycle of each bus cycle to indicate the start 
of the bus cycle. The W/R# signal distinguishes the 
write and read bus cycles. The NENE# output indicates 
to the DRAM controller that the current address is in the 
same DRAM page as the previous cycle. As shown 
later, this information is useful for designing high- 
performance memory systems. 

The NA# input to the CPU controls pipelining and 
can be asserted before the current cycle ends. When the 
processor samples NA# active, it can start driving the 
next bus cycle’s address and definition. This can be 
done two times prior to returning data for any of the 
cycles. 

While NA# controls the address and bus cycle defi- 
nition signals, READY# controls the data operations. 
When READY# is sampled as active for a read, the 
processor latches the data from the data bus. When 
READY# is sampled as active for a write, the processor 
stops driving the data from that cycle. READY# also 
serves to end a bus cycle. The LOCK# signal output 
provides atomic (indivisible) sequences. Using LOCK# 
prevents the processor from relinquishing the bus even 
if HOLD is asserted. For multiprocessor systems, the 
external hardware only needs to lock the first address in 
a locked sequence. 

This processor samples the KEN# input to determine 
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i860 CPU DRAM read cycle 
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I I I I I I I I I 
I I I I I I I 

W/R# I \ I  I I I I I :  I I 
I I I I I I I I I 
I I I I I I I I I 
I I I I I I I I I 
I 

CPUaddress 1 < ' AddressX' > @ 1 I I I I 

I I I I I I I I I 
I I I I I I I I I 
I I I I I I I I I 
I I I 
I I I I 
I I I I 

NA# 
I I I I I I I I I 
I I I I 

I I I I I I I I I 
Data (i860) I I I ;(Data>; 1 @ ; a; I 

I I I I I I I I I 
I I I I I I I I I 
I I I 

I I I 
I I I I I I I I I 

READY# 
I I I I I I I I I 
I I I 

COlX 
I 8 I I 

DRAM address I I I 
I I I I I I I I I 

<Row X x  x Col x + lXC0l x + 2 X C o l  x + 3x 

I I I I I I I I I 
I I I I I I I I 

RAS# I I I I I I I I 
I I I I I I I I I 
I I I I I I I I I 

I I I I I I 
8 I I I I 

I I I I I I I I I 

CAS# 

I I I I 
I I I DRAM data I 

Figure 10. The CPU performs four read cycles to fill a cache line. 

if the data for the current read cycle is cachable. Ad- 
dress space that is used for input and output can be 
decoded to deassert KEN# during I/O accesses. Soft- 
ware can also mark areas of memory as noncachable on 
a page-by-page basis. If the software has not disabled 
caching of the page, and KEN# is available for a read 
cycle, three additional 64-bit bus cycles will be gener- 
ated to fill the 32-byte cache block. 

Interfacing to a DRAM 
system 

Figure 10 shows the processor performing four read 
cycles as it would do to fill a cache line. Also shown in 
the figure is the NA# signal returned to the processor, 
which indicates that the system can accept the next bus 

cycle. Two NA#s are returned before any of the cycles 
are completed. To complete a read cycle, the memory 
system provides the data on the bus and returns 
READY# to the processor. Once fully pipelined, the 
memory system provides data and READY# on every 
other clock cycle. Important for high performance, this 
data rate can be provided by ordinary static column 
DRAMS. The processor also provides the control signal 
NENE# to optimize DRAM control. 

The memory system in Figure 1 1  on the next page 
consists of an address buffer; an address latch; eight 
latching data buffers; and a 64-bit-wide, static column- 
mode DRAM (256K x 4). This arrangement allows the 
memory size to be increased in increments of two 
megabytes. Using 256 x 4-memories also has advan- 
tages in reducing power and signal-drive requirements. 
To support the two levels of pipelining, the processor 
latches both address and data. The address latches hold 
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Multiplexed DRAM address bus 
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Figure 11. A DRAM system for the i860 microprocessor requires little "glue logic." 

the address of the previous cycle, while the data from 
the cycle prior to that is held in the data buffers. Using 
TTL components on the address and data paths also has 
the advantage of isolating the memory system from the 
processor's pin timings. 

The two address latches are used for multiplexing the 
row and column addresses from the processor to the 
DRAMS' address lines. When accesses occur within 
the DRAM page, only the column address needs to be 

supplied to the memory address lines. Most systems 
that use a fast-access DRAM mode need an additional 
hardware comparator. The i860 CPU has a compara- 
tor-which supplies the NENE# signal on each bus 
cycle-built into the bus unit. The controller uses this 
signal to determine if a fast static column-mode access 
can occur or if a full DRAM cycle needs to take place. 

The bidirectional data buffers latch the data for both 
reads and writes. For reads, the buffers latch data and 
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return READY# on the following clock cycle. With the 
two levels of pipelining the total access time is six 
cycles, while data is available every two cycles. Zero- 
wait-state operation does not require pipelining for 
write cycles. When a write occurs, the address and data 
latched in the buffers allow READY# to be returned to 
the processor. The actual write cycle occurs after 
READY# returns to the processor. This delayed write 
operation allows processor execution to continue even 
though the write has not fully completed. 

Using 85-11s static column-mode DRAMS, the 33- 
MHz i860 microprocessor can operate at zero wait 
states for access within the DRAM page. The two-level 
pipelining and two-clock transfer rate allow the proces- 
sor to sustain performance without the need for an 
external cache memory system. 

Vectorizer 

Software support 

Fortran 
compiler 

Both internal development teams and independent 
vendors provide a full complement of software devel- 
opment tools and operating systems for the i860. Figure 
12 shows the software development tools available: C 

and Fortran compilers, assembler/linker, simulator/ 
debugger, Fortran vectorizer, plus mathematical, vec- 
tor primitive, and 3D graphics libraries. To support the 
initial development environments, both Unix System V 
run on a 386 microprocessor and OS/2 host cross- 
compilers. The optimizations used in the compilers 
include coloring for register allocation, register-based 
parameter passing for calls, interblock common subex- 
pression and loop invariant elimination, constant 
propagation, strength reduction, extensive peephole 
optimizations, and instruction scheduling. 

Scientific-application support includes a Fortran 
vectorizing precompiler. Vectorization occurs in Do 
and If loops, outer loops, and forward-branching condi- 
tional operations. The precompiler recognizes these 
structures and generates calls to a set of preprogrammed 
procedures. The preprogrammed procedures are opti- 
mized for the processor’s instruction set and for manag- 
ing the data cache as a vector register. Additionally, 
other high-level languages can call these procedures. 
We plan to further increase the degree of parallelism 
that high-level languages can use in the processor. We 
also provide a library of assembly-language routines 
for scalar mathematics. 

C 
compiler 

ASM source 9 I 
I Assembler Linker 

Vector 
primitive library processor 

Math library 

Figure 12. Software development environment supporting the i860. 
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The first 3D visualization tool ported to the iX60 
CPU is Ardent Computer's Dore. This tool supports 
both real-time. interactive 3D modeling and higher 
quality static images. Several windouing environments 
and other 3D tools and libraries are also being ported. 

Application software can be run on either a softuare 
simulator or an add-in application accelerator. Both 
share a common debugging interface. The simulator 
allows the user to model different memory systems and 
measure their effects on performance. A Unix V/386 o r  
OS/2 hosts the application accelerator. which includes 
a runtime operating environment that maps I/O re- 
quests back to the host processor. 

A multiprocessing version of Unix System V Release 
4.0 is under development for the i860 CPU. This is a 
joint effort by AT&T, Convergent Technologies, Intel, 
Olivetti, Prime Computer, and others. We plan to main- 
tain source-code compatibility with the high-level lan- 
guages between the 386, i486, and i860 microproces- 
sors. Specifications for an applications binary inter- 
face standard (ABI) will allow portability of 
application software across multiple vendors' system 
implementations. 

Les Kohn is a chief architect for high-performance proces- 
sors at Intel Corporation of Santa Clara. California, where he 
has worked on various 32- and 64-bit microprocessor design 
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Kohn received his BS degree in physics from the California 
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he i860 microprocessor begins the second genera- 
tion of 32-bit RISC processors. By using a 64-bit T architecture. the i860 delivers balanced MIPS, 

Mflops. and graphics performance. The million-tran- 
sistor budget lets us integrate the RISC core and pro- 
vide dedicated, fast floating-point hardware, graphics 
capabilities, and cache memories on one chip. The 
design allows maximum parallelism between the func- 
tional units while achieving a balance between compu- 
tation speed and data bandwidth. Mainframe and super- 
computer architectural concepts let the processor offer 
a complete solution :%the requirements of high-compu- 
tation applications.& 
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