IBM RISC System/6000:
Architecture and Performance

Richard R. Oehler

Michael W. Blasgen

IBM Research Division

14 IEEE Micro

The IBM RISC System/6000 realizes the idea of a superscalar microprocessor. The architecture
of this processor has its instruction set specifically designed for a superscalar machine con-
taining three independent units—branch, fixed-point, and floating-point. Besides the empha-
sis on superscalar, the design also emphasizes high-performance floating-point operations.

wo features distinguish the RISC Sys-
tem/6000 from other reduced instruc-
tion-set computing mMicroprocessors:
superscalar organization and high-
performance, floating-point capability.

We designed the architecture to be realized as
a superscalar machine. By superscalar we mean
a machine that, like a simple scalar machine, ex-
ecutes one nonvector instruction stream but
achieves high performance by dividing the work
among independent functional units that operate
in parallel. Thus, with an execution unit in the
pipeline that permits one-cycle execution, 4 sca-
lar machine can execute three instructions in three
cycles. In comparison, a superscalar machine with
three independent units can execute the same
three instructions in one cycle if they are inde-
pendent (ignoring pipeline latencies). Superscalar
systems of this sort can improve cycles per in-
struction by a substantial amount.

To achieve this superscalar characteristic, we
have separated the RISC System/6000 (called
system hereafter) processor into three major ex-
ecution units: fixed-point, floating-point, and
branch. Each of these units operates in parallel.
with the branch unit in overall control and re-
sponsible for ensuring the integrity of program
execution.

We have seen other machines with such
superscalar organizations, the most notable be-
ing several early IBM machines like the Assem-

bly Control System project described by John
Cocke in his Turing lecture' and the 360/91.> More
recently, developers of the Intel 860 and Apollo
DN10000 have used a superscalar approach, al-
though the approaches used in these machines
are somewhat different. For example, the 860 has
an explicit mode for dual-instruction execution,
which is a type of very large instruction word
format. The system does not define a mode, and
all instructions run in superscalar mode.

The realization of the system architecture in a
full superscalar organization does require sub-
stantial hardware—more than could fit on one
chip in the available complementary metal-oxide
semiconductor (CMOS) technology.

For example, we assigned registers to func-
tional units, and most instructions execute en-
tirely within a unit. When the compiler requires
interaction (for example, when the fixed-point
unit generates condition codes that the branch
unit uses), it schedules the code explicitly for
maximum performance. Thus, the system exposes
its latent parallelism to the compiler and expects
the compiler to deal with the parallelism. And,
like the original 801 (see box), the system some-
times even requires software intervention in the
management of data and instruction cache cross-
consistency to ensure properly functioning
programs.

(The machine does not, however, require
scheduling of instructions to function correctly—
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the pipeline is fully interlocked, and the superscalar aspects
of the machine are automated. Scheduling is only required to
achieve high performance.)

The second distinguishing feature of the system is the em-
phasis on floating-point performance. Very early in the project
we conceived of an advanced floating-point unit design that
would permit a 64-bit multiply-and-add operation to be com-
pleted every cycle. To ensure access to storage did not limit
floating-point performance, we designed the machine to
complete a load or store operation every cycle as well, in
parallel with the floating-point operations.

The fixed-point unit performs all storage operations in-
cluding address computations, which permits full overlap with
the floating-point unit. To further improve path length, we
carefully reviewed the 801 instruction set and made many
changes. In particular, we incorporated new compound
instructions like multiply-add, branch-on-count, and
update-load.

These two features of the system-—superscalar organiza-
tion and high-performance floating point—led to the basic
design principles. The principles are to offer maximum over-
lap of the three functional units, avoid dead cycles, and de-
fine instructions that can (for the most part) be completed at
a rate of one per cycle.

Branch cycle

An independent functional unit handles branches and
manipulates condition registers, instruction fetch, and instruc-
tion caching. The branch unit has its own register set to con-
tain condition codes, target addresses, and loop counts. It
executes the instructions that manipulate the condition
registers.

The branch unit fetches instructions from memory (cach-
ing them in the instruction cache), executes the branches,
and dispatches the remainder to the floating- and fixed-point
units. The branch unit conducts these operations until either
the queue of instructions at the other units is full or a condi-
tional branch is encountered with an unsatisfied dependency
on one of the branch unit’s local registers.

When the branch unit sees an unconditional branch, it
simply executes it. As a result, unconditional branch execu-
tion overlaps with other computations, producing zero-time
unconditional branches. Since procedure call linkage is im-
portant, the branch unit has a link register to contain the
target and/or return instruction address for subroutine link-
age. The branch instructions contain a field that controls
whether the branch instruction sets the link register; this can
be used to save return addresses.

To handle conditional branches, the branch unit uses the
condition register and the count register.

Using the count register speeds up looping. A defined
compound instruction, branch-and-count, decrements the
count register by one and branches on the resulting value. In

RISC development

Under the mtellecmal guidance of john Cocke, re-
searchers. at the JBM T }.. Watson Research Center in--
vented and constructed the first RISC machine—the
801-—in the 1970s. Since then the same team developed
several variations. Newer machines extended the origi-
nal ideas to include virtual addressing® and enhanced
Starting in 1985, most of the original 801 team, includ-
ing Cocke, embarked on a new effort, the America
‘project, to reconsider the issues of machine architecture
with the benefit of 801 experience and its follow-ons.

(Cocke suggested the hame, America. He recited the
story of Queen Victoria watching the completion of the
first America’s Cup race in England in the 19th Century.
The Queen asked: “Who is in first?” The reply came,
“America.” “And who is.in second?” she asked. Answered
the Queen’s aide, “There is no second.”) :

The team performed studies on floating-point organi-
zation and performance; the effectiveness of the archi-
tecture as a compiler target, and; most importantly, the
possibilities of instruction-level parallelism through the
use of dense VLSI capabilities;

Three components determine processor performance
the number of instructions it takes to-execute an algo-
rithm, the cycles per instruction, and the cycle time. Re-
ducing both the number of instructions and cycles per
instruction was ‘the objective ‘of the design.. The pro-
posed approach used is:a “superscalar’ organization, a
term coined by Tilak Agerwala and Cocke .to describe
the instruction-level parallelism envisioned in the new
machine.’ This activity led to a_new-generation RISC.
The research division initiated a minor effort to design
an America machine. This: work. progressed very rap:-
idly, and it soon became clear that such a system was -
feasible and offered important advantages. Rather than
develop in research what could have only been a proto-
type, IBM’s Research Division team approached the
company’s development laboratoiies. -« ;

In 1986, a group at' IBM's Austin, Texas, labomory
accepted the America ideas. This decxslon evenmlly led
to the RISC Systemy/6000.5

most cases, fixed- and floating-point operations can overlap
the branch-and-count function, achieving zero-time, loop-
closing branches. Other conditional branches refer to a con-
dition code, placed in the condition register by previously
executed fixed- and floating-point operations. If early sched-
uling of the condition code setting is possible, conditional
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branches can also be fully overlapped, again achieving zero-
time branches.

More specifically, the 32-bit condition register divides into
eight condition fields. Two of the eight condition fields are
assigned to fixed- and floating-point units (one each) to con-
tain the codes associated with arithmetic computations.

Both fixed- and floating-point arithmetic instructions con-
tain a record bit that indicates whether the corresponding
condition field should be set. Any of the eight fields can be
explicitly set with compare instructions. The two permanently
assigned fields permit the fixed- and floating-point units to
set the conditions in parallel. The motivation for the record
bit is to permit the compiler to move condition code-setting
instructions to an earlier point, because subsequent instruc-
tions with the record bit off will not change the computed
condition code.

Branch instructions have three types of address computa-
tions: program counter relative, absolute, and register. In the
relative and absolute types, the addressing information is
located in the instruction and can execute immediately. We
use branches based on the link register when the target ad-
dress is not known at compiling time or is too large to be
contained in the instruction. For subroutine calls the com-
piler must move the subroutine address or the return address
to the link register as early as possible to overlap the branch.

Part of the cost of separate branch registers is the addi-
tional instruction(s) required to move the contents of the
branch unit registers to or from the general-purpose regis-
ters. Early in the development cycle, we considered eliminat-
ing the extra instructions by using a specific general-purpose
register as the link register. In this proposal, the fixed-point
unit would monitor all loads of that general-purpose register
and ship the new value to the branch unit. We rejected this
proposal because it would not have saved any time, since
the coordination and transfer would still take at least one
cycle. Furthermore, the compiler would not gain any advan-
tage. In fact, by making the branch scheduling explicit, the
compiler can use its general scheduling algorithms to deal
with this more globally.

Fixed-point unit

Besides handling all of the normal integer and string in-
structions, the fixed-point unit accomplishes all data address
computations for both itself and the floating-point unit. In
this role, the fixed-point unit schedules the movement of
data between the floating-point unit and the data cache. The
floating-point unit’s role is to either supply or accept the data
between the data cache and its floating-point registers. Float-
ing-point loads and stores are fixed-point operations and take
fixed-point cycles.

The RISC fixed-point unit represents only evolutionary
changes as compared with the early 32-bit 801. It has thirty-
two 32-bit general-purpose registers, three operand opera-
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tions (RT = RA + RB) and a powerful rotate and mask facility.
All instructions are 32 bits long. Load and store instructions
also have an update mode for use in automatically incre-
menting the address. An MQ register processes multiply and
divide as well as extended-precision computation. Each arith-
metic operation computes the three standard conditions of
less than, equal, and greater than. The generation of condi-
tion codes occurs on each arithmetic instruction, but the con-
dition field (back in the branch unit) is not set unless the
record bit in the arithmetic instruction is set.

The most significant departure from the original 801 is the
inclusion of more complex instructions, reflecting the increased
very large-scale integration (VLSI) capability available in the
1990s. The system supports integer multiply and divide,
floating-point arithmetic, and string operations. Studies jus-
tify the string operations by indicating that moving strings
takes as much as 15 percent of the cycles during key integer
tasks. Given the wide data paths envisioned in the system’s
processor, we need to define string operations. Such opera-
tions move unaligned data from storage to consecutive regis-
ters, or from consecutive registers to storage.

The most significant departure
from the original 801: The
inclusion of more complex
instructions, reflecting the

increased VLS| capability.

To achieve high performance on subroutine linkage, sys-
tem designers adopted load multiple and store multipie in-
structions. Since these instructions define a sequence of
registers to be loaded or stored, they permit an implementa-
tion to achieve its maximum transfer rate between the registers
and storage. The operating system also uses this approach
during the process switch. Both the load/store multiple and
the string instructions are multicycle operations.

Floating-point unit

The floating-point unit’s architecture has thirty-two 64-bit
floating-point registers. (The hardware has 38 registers.) The
floating-point status and control register contains exception
indicators, default exception masks, and floating-point con-
ditions. The floating-point unit supports the ANSI/IEEE Stan-
dard 754-1985. The architecture defines the basic arithmetic
set of add, subtract, multiply, and divide operations. It also




defines the usual floating-point register move, and negate
and absolute value operations. It provides for round to single
and floating compare. To fully conform to the IEEE standard,
the system requires software support for some of the ex-
tended functions required by the standard such as square
root.

Since the state associated with thirty-two 64-bit registers is
substantial, the system includes instructions to set and re-
lease a floating-point register lock. When set, this lock pre-
vents the execution of floating-point instructions. An attempt
to execute any of these instructions will cause an interrup-
tion identifying the attempted use. This interruption permits
the software to save the floating-point registers during a pro-
cess switch for only those processes that are actually accom-
plishing floating-point work.

An important feature of the floating-point unit is this: It can
execute a multiply-add instruction on every cycle. The mul-
tiply-add instruction has four operands (two multiply, one
add, and a fourth register for the result). For high precision,
the multiply-add develops the full 106-bit precision in the
multiply, conducts the add at a full 162-bit precision, and
then scales the result to a 53-bit mantissa. Thus multiply-add
is somewhat more powerful than the two-instruction sequence.
We believe this extension to the IEEE precision rules is con-
sistent with the intent of the standard, and in fact this preci-
sion is required to get accurate results in certain computations.

To exploit the level of computational power offered by the
multiply-add operations, we must give and take data from
the floating-point unit by means at least as fast as these in-
structions can execute. We accomplish this exploitation by
using the fixed-point unit as the address generator and the
data mover for the floating-point unit. A large number of
floating-point registers act as a buffer. These facilities, when
applied to standard math library functions, have lead to some
remarkable results. For instance, studies of various matrix
operations have shown that the system achieves performance
usually associated with vector machines. Additionally, if the
matrix operations understand the geometry of the data cache
and have significant reuse (as do the IBM Engineering and
Scientific Subroutine Library scientific subroutines that are
available for the machine), users obtain even better
performance.

Cache management

The architecture specifies a copy-back cache. In such a
cache, results stored to memory by the processor are placed
in cache, and then at some later time a cache line is copied
back to main memory. Thus main memory and cache do not
reflect the same state, which is not a problem for the proces-
sor alone, since it always views memory through the cache.
However, it is a problem for 1/0, since data moved by I/O
comes from or goes to main storage directly, bypassing the
data cache. Additionally, the instruction cache does not auto-

Table 1. Models of the RISC System/6000.

Processor
Models Clock cycles (ns)  Data cache (Kbytes)
320, 520 50 32
320H 40 32
530, 730, 930 40 64
540 33 64
550, 950 24 64

matically coordinate stores in the data cache. This is a prob-
lem for programs, like the loader, that create other programs
from data.

This approach to cache memory is the same as that used in
the original 801. A consequence of this approach is that soft-
ware must manage the synchronization between the cache
and main memory (for 1/0) and between the caches (for
program management).

The realization

A multichip CMOS processor made the system architecture
a reality. Three processing chips—fixed, floating, and branch—
directly correspond to the three functions. The fixed-point
chip contains general-purpose registers along with the inte-
ger arithmetic unit and the string operations. The floating-
point chip holds floating-point registers along with the
high-performance, floating-point, multiply-add array.

The branch chip contains the 8-Kbyte instruction cache. A
16-Kbyte, custom static RAM, data cache chip is replicated
two or four times in the processor. The set rounds out with a
memory control chip and an I/O control chip.

The different models of the system use different clock
speeds and data cache sizes (see Table 1). In each cycle, the
branch unit can fetch four instructions from the instruction
cache. Then the branch unit executes two instructions (pro-
vided one is an instruction that manipulates condition
registers and the other is a branch instruction). Finally, it
sends out two instructions to the arithmetic units. Both in-
structions are sent to both arithmetic units, and each arith-
metic unit discards the instructions that are not appropriate
1o it. Thus the ideal instruction stream consists of one CR-
logic instruction, one branch instruction, one fixed-point in-
struction, and one floating-point instruction in each group of
four consecutive instructions (in any order within each group).
This mix can execute at a rate of four instructions per cycle
(ignoring pipeline delays and multicycle instructions).

In practice that mix is seldom achieved. There are almost
never that many CR-logic instructions. In addition, fixed-
point unit operations dominate many programs. But many
floating-point-intensive jobs can achieve three instructions

continued on p. 56
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continued from p. 17

per cycle. By considering the floating-point add as two op-
erations, the processor can achieve four operations per cycle.

The arithmetic units can each hold six instructions in buff-
ers, and this makes the machine somewhat forgiving if the
sequence departs from the ideal alternatives. Furthermore,
the floating-point unit has an additional stage for renaming
and a second stage of execution. These stages act as two
additional buffers.

In more detail, performance aspects include:

« All fixed-point unit instructions take one cycle, except
for multiply (three), divide (19), and load- and store-
multiple (variable number of cycles) operations.

* Fixed-point load followed by use incurs a one-cycle de-
lay; an independent operation should be inserted be-
tween the load and its use. A floating-point load followed
by use normally incurs no delay.

¢ Support of unaligned operations is available, but this
support should be avoided for maximum performance.

* The floating-point unit has a two-cycle latency, with a
two-stage pipeline. It retires one floating-point opera-
tion (including multiply-add) per cycle, unless the op-
eration depends on the immediately preceding operation.
Hardware fully supports basic floating-point operations,
including cases that involve denormalized numbers, in-
finities, and so on.

* Unconditional branches take zero time in most cases.

» Conditional branches take zero time if there are three
independent instructions between the compare and the
branch. In the absence of intervening instructions, a
compare followed by a branch-taken incurs a three-cycle
delay, and a compare followed by a branch-not-taken is
zero (because of conditional dispatching of the next
instruction).

Warren® provides more details on performance prediction.

While the architecture specifies 32 floating-point registers,
the implementation actually has 38, as does the dynamic reg-
ister-renaming function. Renaming prevents delays by
avoiding apparent conflicts. For example, consider the se-
quence:

Reg 3=Reg 2 + Reg 1
Store Register 3
Load Register 3 with new value

The load following the store is presumably the next iteration

of the loop. The register-renaming hardware will note that
register 3 is not the same physical register as the one named
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in the preceding store. The hardware will, for purposes of
the load, rename some other physical register as register 3.
This step permits the load to proceed without interlocking
with the preceding store. In general, any instruction that re-
defines a register’s contents in the presence of its preceding
use is a candidate for renaming.

We envision other implementations of the architecture
besides the present system realization.

Performance

The benefits of the system’s superscalar organization is
shown in the SPEC benchmarks.” Table 2 shows the SPEC
ratios and Specmarks for various systems. (IBM announced
these results, which reflect new versions of the Fortran and C
compilers, in November 1990.)

Different effects contribute to the fast performance of the
top machines. The system owes its performance to a super-
scalar organization implemented in CMOS. The fast Mips
Computer Systems machine has a cycle time of 17 ns achieved
through the use of bipolar technology.

Benchmark details

At IBM Research, we wrote an instruction-trace simulator
that traces the execution of a program, producing the se-
quence of instructions executed. We used this tool to capture
the execution of the individual SPEC programs. We then ex-
amined the traces, looking at the frequency and sequences
of various instructions.

We chose three of the SPEC benchmarks (LI, Matrix300,
and TOMCATV)—two extremes and a midpoint. LI does not
show the advantages of the independent units; at the other
extreme TOMCATV achieves a very high degree of instruction
overlap. Matrix300 is an interesting case because it offers a
significant opportunity for compiler optimization.

LI benchmark. Table 3 (on page 58) summarizes the re-
sults of tracing the LI benchmark. Of the three benchmarks
mentioned in this article, the LI program achieves the least
instruction-level parallelism of any of the SPEC benchmarks.
On the LI program, the system gains nothing from having an
independent floating-point unit. Its independent branch unit
sometimes helps and sometimes hurts. (In Table 2, a scalar
processor like the Mips R3000—included in the 40-ns
DECstation 5000 Model 200—matches the performance of
the superscalar, 40-ns RISC System/6000 Model 530 on the LI
benchmark.)

The principal function in LI is the searching of a linked list
for a match. Since the average depth of search is very shal-
low, it is very difficult to schedule this code. Figure 1 on
page 59 details this search.

Since this search includes no floating-point code, the only
overlap possible is between the branch and fixed-point units.
To achieve overlap with the fixed-point and branch units,
the compiler should schedule code to obtain separation be-




Table 2. SPEC benchmarks, arranged according to decreasing Specmark.
SPEC ratios
Spice Spec-

System Gce Espresso 2g6  Doduc Nasa7 LI Eqntott Matrix300 Fpppp TOMCATV mark
IBM Model 550*  30.2 347 47.7 45.6 779 338 399 78.3 89.8 132.6 54.3
Mips RC6280 47.5 43.8 38.0 39.3 439 451 38.6 51.9 51.8 42.5 44.0
IBM Model 540*  22.4 25.0 34.7 32.8 548 241 28.5 49.1 66.7 95.8 38.7
IBM Model 530* 17.4 20.8 28.8 274 456 20.1 23.7 419 55.3 79.8 32.0
Stardent 3010 18.1 20.8** 14.2** 19.9 64.9 18.5** 18.7** 109.6 301 61.3 29.4**
Alacron AL860

accelerator 15.1** 22.3** 181 18.8 57.6 21.7** 18.9** 28.1 257 43.8 284.7**
1BM Model 520* 13.4 16.3 20.4 21.2 333 1538 18.6 34.2 43.2 59.1 24.6
Intel Star 860 13.5** 20.5** 14.7 15.6 452 17.9** 18.0** 21.6 21.2 36.3 20.8**
Solbourne

5E/901 239 19.7 18.5 141 215 217 22.0 25.9 22.5 16.5 20.3
Silicon Graphics

4D/320 S 21.5 23.6 15.3 19.8 182 255 20.2 13.3 24.7 16.5 19.5
Sun Sparc-

server 490 211 16.6 16.5 17.2 237 220 19.6 24.6 19.0 15.6 19.4
HP Apollo

Series 10000 13.6 13.4 11.7 23.9 267 1.7 1.4 22.0 38.9 31.2 18.6
DECstation 5000

Model 200 17.3 18.5 13.7 18.2 226 218 18.4 17.0 22.0 17.3 18.5
Mips RC3260 19.0 18.9 13.8 17.2 18.7 238 18.4 14.0 234 17.7 18.3
Mips M/2000 19.3 18.9 13.9 17.3 18.7 24.0 18.5 14.0 233 17.7 18.3
Mips RC3230 18.4 18.1 14.3 16.7 20.9 231 18.8 15.5 15.9 18.5 17.9
Server

* RISC System/6000 *Portability changes made to source code to execute benchmark

tween the loads and the subsequent use (including com-
pare) and between the compares and the branches. As can
be seen in the “Load to use distance” (Table 3), an instruction
does not occur between the load and the use of the loaded
data in 53 percent of the cases. The current implementation
will lose one cycle in this situation.

As can be seen in the “Condition to branch distance” (Table
3), an instruction does not occur between the test and the
branch in 61 percent of the cases; of these, 41 percent are
taken. One instruction occurs in 21 percent of the cases, and
of these 33 percent are taken. Two instructions occur in 10
per cent of the cases, with 17 percent taken. Finally, in 3
percent of the cases, three instructions occur, with 10 per-
cent taken. This condition creates many delays in the pipe,
since up to three cycles can be used on taken branches. This
penalty reduces every intervening instruction by one cycle.

Thus the LI benchmark does not exploit the superscalar fea-
tures of the machine. Various improvements in compiler
technology enhanced scheduling of the branch.

LI is the only benchmark that has a moderate level of sub-
routine linkage. As can be seen from the “No. of registers
loaded” data (Table 3), the compiler successfully reduces the
number of registers that need to be saved/restored.

Matrix300 benchmark. Table 4 on page 59 summarizes
the results of tracing the Matrix300 benchmark. Just one loop
completely dominates the Matrix300 program. This program
performs well on the system, but the data cache is limited.
Figure 2 shows the subroutine that contains that loop.

Significant improvements in the Matrix300 numbers have
been made since their initial presentation at the August 1990
Hot Chips Conference.”

We can directly attribute these improvements to the changes
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Table 3. LI SPEC benchmark summary.*

Instruction frequencies and branches

Types Percent
Instruction frequencies
Branch 22.8
Load 25.4
Store 15.5
Compare 13.2
Add/Sub 71
Logical 6.2
Rotate/Shift 1.5
Move 4.7
Floating 0.0
Branches
With links (local calls) 2.2

With links (X-module calls) 0.3

Unconditional 38.3 of total
Conditional 61.7 of total
Taken 34.8
Not ta 65.2

Moving between GPRs and branch unit SPRs

LM and STM (linkage)

No. of registers No. of registers

Direction Percent
From (SPR to GPR) 2.2
To (GPRto S 2.1

Load and link register conditions
Load to use distance Link register to branch

Distance Percent Distance  Percent
0 53.1 0 6.1
1 19.7 1 34.6
2 5.0 2 50.1
3 2.8 3 5.3
4+ 19.4 4+ 3.0

= Average of 4.4 percent

* Percentages are based on a trace of 300 million instructions. Neither string operations nor CTR registers were used.

loaded by LM Percent stored by STM  Percent
2 34.7 2 34.9
3 23.5 3 24.2
4 3.2 4 3.2
5 4.8 5 4.7
6 5.7 6 5.6
7 16.2 7 15.8
8 11.5 8 11.2
9+ 0.4 9+ 0.4
Condition to branch distance
No. Count Taken Not taken
0 60.6 41.0 59.0
1 20.8 32.7 67.3
2 10.0 171 82.9
3 3.4 9.5 90.5
4+ 1.5 22.7 77.3
Basic block lengths**
No. Percent
1 14.2
2 9.8
3 24.6
4 16.2
5 9.1
6 9.1
7

+ 17.0

in the Fortran compiler. This compiler modifies the main (and
only significant) loop in two ways. First, it reorders the com-
putation removing a floating-point load from the loop. This
reordering reduces the basic block from six instructions to
five. Since this load was not overlapped, its removal leads to
a significant reduction in time. Second, and perhaps more
important, the compiler changed the loop’s array reference
from a second-dimension variation to a first-dimenston varia-
tion (and rewrote the equation). The change significantly im-
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proved data cache reuse, since the way the compiled pro-
gram now references storage is sequential. Referencing the
data by the second dimension results in good data cache
reuse only if all the data fits in the cache. This is not the case
with Matrix300, where the matrix occupies 720 Kbytes.

The new compiler reduces the running time for Matrix300
from 170.9 to 107.9 seconds as measured on a Model 530.
This reduction emphasizes the importance of compiler tech-
nology in RISC performance. Significant performance gains




I xlygetvalue - get the value of a symbol (no instance variables)
*
NODE *xlygetvalue(sym)
NODE *sym;
{
register NODE *fp,*ep;

/* check the environfnent list*/
for {fp = xienv; fp; fp = cdr(ip))
for (ep = car(fp); ep; ep = cdr(ep))

it (sym == car(car(ep))}
return (cdr(car(ep)));
/* return the global value */
return (getvalue(sym));
In assembler:
loop:
I r11,8(r11)  # fixed load (displacement format)
cmpi ¢r0,r11,0 # compare with nuil (0)
beq cr0,60.202 # branch if end of list
i r12,4(r11)
t 10,4(r12) # two levels of indirection
cmpl - ¢r1,e31,10  # compare for match
bne - “cri,loop # branch if no match
001.202:

Figure 1. Linked list search in LI SPEC benchmark.

SUBROUTINE SAXPY(N, A, X, INCX, Y, INCY)
IMPLICIT REAL*8(A-H,0-Z),INTEGER*4(I-N})
DIMENSION X(INCX,N), Y(INCY,N)

IF (N.LE.O) RETURN
DO10I=1N
Y(1L,1) = Y(1,1) + A*X(1,1)

10 CONTINUE

RETURN )

END #

The assembler code for this loop is as follows:
loop:

Ifdx r0,r11,r9 # load float (Y)
Ifdux fr1,r12,r10 # load float with update (X)
fma r0,fr0,fr2,fr1 # floating multiply add
stfdux fr0,r11,19 # store float with update (Y)
bdn oop # branch-and-count

Figure 2. The Matrix300 loop.

come by exposing many of the machine resources to a com-
piler. As compilers continue to improve, so will the perfor-
mance numbers. In fact, we know of techniques involving
strip mining (block for cache), jamming, and unrolling that
will provide substantial improvements in programs like Ma-
trix300. These techniques have already been used in care-
fully coded Fortran programs like IBM’s Engineering and
Scientific Subroutine Package. This approach is known to be
amenable to automation in a compiler.

In May this year, IBM announced improvements to the
Fortran compilers based on the previously mentioned tech-
niques. Matrix300 execution time on a Model 530 dropped to
10.4 seconds. This is 435 times faster than the reference of
VAX 11/780.

Table 4. Matrix300 SPEC benchmark.*

Instruction frequencies and branches

Types Percent
Instruction frequencies
Branch 20.0
Load 39.5
Store 19.9
Multiply-add (float) 19.7
Branches
Unconditional 0.4 of total
Conditional 99.6 of total
Taken 99.0
Not taken 1.0

Condition to branch distance

No. Count Taken Not taken

1 0.1 63.3 36.7

2 99.1 0.4 99.6
Basic block lengths**

No. Percent

2 0.3

3 0.2

4 0.3

5 98.4

16 0.8

* Percentages are based on a trace of 300 million
instructions. No movement between GPRs and
branch unit SPRs occurs. The CIR register is used
significantly. Almost no branches and links result.

** Average of 5.0 percent
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The assembler code in Figure 1 shows that two loads and
one store in the loop dominate the Matrix300 code. It ap-
pears that a stall occurs between the load of floating-point
Register 1 and the floating-point multiply-add using this reg-
ister, and that loop would help eliminate this stall by produc-

Table 5. TOMCATV SPEC benchmark.*

Instruction frequencies and branches

Type Percent
Instruction frequencies
Branch 6.1
Load 331
Store 9.6
Compare 1.7
Add/sub (float) 15.0
Multiply (float) 10.7
Multiply-add (float) 18.4
Divide 0.8
Branches
Unconditional 0.3 of total
Conditional 99.7 of total
Taken 99.3

Not taken 0.7

Conditio /t/ck)“bré'hch distance

No. Count Taken Not taken
0 141 98.7 1.3
2 0.1 2.3 97.7
30+ 85.8 99.9 0.1
Basic block lengths**
No. Percent No. Percent
1 14.0 9 139
2 0.1 10 0.1
3 0.2 12 1.1
4 0.1 13 13.8
5 14.1 14 0.1
6 14.0 17 13.8
8 0.1 18+ 14.6

* Percentages based on a trace of 740 million instructions.
Almost all loads/stores and compares are floating-point
units. Movement is minimal between GPRs and branch
unit SPRs, and the CTR register is used a little. Aimost no
branches and links result.

** Average of 16.5 percent
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ing increased opportunities for scheduling. This is not the
case, however, because of the register renaming. Only one
stall (at the beginning of the loop) takes place because the
fixed- and floating-point units operate in parallel, and be-
cause the floating-point unit renames registers. The floating-
point unit postpones the store and continues the loads of the
next iteration. The data loaded is available when the floating-
point unit starts the multiply-add. Both of these characteris-
tics (postponing stores and the one-cycle slip between the
fixed- and floating-point units) are typical dynamic execu-
tion time traits of the system as it approaches peak perfor-
mance.

TOMCATV benchmark. Table 5 summarizes the results
of tracing the TOMCATV benchmark. The TOMCATV pro-
gram is the type of program in which the RS/6000 performs
best. The loops are reasonably long; there is good use of
both fixed- and floating-point instructions, which can be al-
most completely overlapped. The compiler can utilize the
branch-and-count instruction to close loops, thereby assur-
ing no lost cycles. While there is no single “hot spot” in the
code, the loop shown in Figure 3.

A mixture of floating- and fixed-point operations (the
floating-point loads and stores, the fixed-point stores, and
the add immediate) occurs as well as a balance between
them. A branch-on-count (not shown) controls this loop. We
use multiple condition fields of the condition register. The
only performance penalty in the loop is the partially sched-
uled branch true on cr0. Overall, the compiler and machine
together achieve remarkable performance on TOMCATV be-
cause this program has both vector and scalar operations, a
good mixture of fixed- and floating-point operations, and its
basic blocks are large and therefore allow ample instruction
scheduling.

THe RISC SYSTEM/6G000 REPRESENTS A signifi-

cant advance over the original 801 ideas: We integrated float-
ing-point features into the architecture and concentrated on
the parallel aspects of execution. But many of the improve-
ments are in the details learned over many years by writing
compiler and system code for 801-style machines. Overall,
this development has led to an architecture that offers re-
markable floating-point performance—comparable to that




DETERMINE MAXIMUM VALUES OF RESIDUALS

000

DO 270 J=1M
DO 270 1= 11P,12M
IF(ABS(RX(1,)).LT.ABS(RXM))} GOTO 262
RXM = RX(1,d)
XM =1
JRXM = J

262 IF(ABS(RY(1,J)).LT.ABS(RYM}) GOTO 270
RYM = RY({1,J)
IRYM =1
JRYM =4

270 CONTINUE

The assembler code for some of this loop is as follows:
loop:

fabs friofr24 # absolute value
Hdu {r8,8(17) # load rx
fabs r13,fr23
Ifdu r11,8(r8) #load ry
fabs fr9,fr8
ai r23,14,1 # add immediate
fabs friz,fri1
fempu cr0,fr9,fr10 # fioating compare
fempu cr6,fr12,1r13
bit cr,br1 # branch if less than
fmr r24,1r8 # floating move register
st r4,120(r30) # store ixm
stfd 1r8,128(r30) # store rxm
st r12,124(r30)  # store jrxm

bri:

Figure 3. The TOMCATV loop.

offered by many vector processors—as well as performance
on integer tasks equal to the best of RISC processors. The
first implementation of the system architecture is a high-per-
formance, multichip processor. As technology evolves, we
will shrink the current machine to one chip. A future multichip
realization can use multiple fixed- and floating-point units to
improve cycles per instruction even further.

Unlike earlier RISCs, the RISC System/6000 architecture
anticipates a superscalar organization by partitioning the reg-
isters by function. The result allows instruction-level parallel-
ism while requiring only limited coordination. By exposing
the areas of coordination required, the system permits a
compiler to generate highly optimized code that achieves, in
some cases, close to the theoretical maximum parallelism
possible from this machine. @
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